Metals Used in Aluminum Sand Casting

Metals Used in Aluminum Sand Casting

1) Products description 2) The Aluminum Sand Casting Process Green sand, which is new or regenerated sand mixed with natural or synthetic binders, is the most commonly used material for making aluminum expendable molds. Green sand molds get their name from the fact that they are still moist when...

Chat Now

Product Details

1) Products description

Product name

metals used in aluminum sand casting

Material

Aluminum alloy A356-T6

Working Process

lnjection mold→Die Casting Raw Material → Trimming → Deburring →CNC turning → Tumbling→ package → Shipping,etc.

Available facilities for this product

Eight sets Die Casting machine(From160T to 1000T)

Four sets advanced  CNC machining centers (3axis,4axis,CNC machine center)

Twenty sets CNC Lathes, 2sets drilling machines, etc.

Good Inspection

Instruments

X-ray Detector, CMM inspection machine, Spectrum Meter, Imaging Measurement Instrument, etc.

Surface Treatment

Sand blasting

Product weight

420gram

Application

Diagnosis Equipment, Hospital machines, Medical devices,  marine & ship equipment, Telecommunication, Textile Industry, etc

Packing

Inner packaging:1PCS/ color box Outside Packaging:18pcs/carton.32 Cartons/wooden case

Certification:

ISO:9001:2008

 

2)The Aluminum Sand Casting Process

Green sand, which is new or regenerated sand mixed with natural or synthetic binders, is the most commonly used material for making aluminum expendable molds. Green sand molds get their name from the fact that they are still moist when the molten metal is poured into them. The process of aluminum sand casting using green sand and the gravity filling method can be summarized as follows:

◆ a mold is created by placing the mixture of sand, clay and water on a pattern (the replica of the object to cast). Although this process can be done by hand, machinery is normally used in order to achieve better precision of the mold. When the pattern is removed the clay will have a cavity that corresponds to the shape of the pattern

◆ the sand mold has two or more parts, the upper part is known as the cope while the bottom one is called the drag. Additional parts known as cheeks can also be used. The molds are encased in a two part (or more if cheeks are used) box called a flask for protection. Before the flask is closed, any sand cores needed to manufacture the part details are placed in the mold halves. The gating system is placed inside, and a sprue is formed in order for the molten alloy to be fed into the cast

◆ the two halves are closed and clamped together and molten metal is then poured into the mold. As the metal starts to cool and some contraction takes place, molten metal is fed in from the risers that were placed in the casting system

◆ because sand and clay do not absorb heat, the cooling time is a lot longer than that of permanent mold or die casting. Chills (metal plates) can be inserted into the sand mold in order to help provide an equal cooling rate throughout the cast. As a consequence of the slower cooling, there is an appreciable decrease in the mechanical properties of alloys such as Aluminum 319 and 356, magnesium and bronze when compared to those of the same alloys cast with the permanent or die casting methods based on the Secondary Dendrite Arm Spacing (SDAS) value

◆ after a preset dwell time to allow the metal to solidify, the cast shake out takes place. The heat from the molten metal that is poured into it dries out the moisture making the cast easy to crack open when the metal has cooled

Aluminum sand casting defects to look out for are residual oxide film, inclusion, core erosion, gas holes and shrinkage porosity.

Sand cast aluminum components are widely used in the automotive and transportation industries including aerospace. Parts commonly produced with sand casting include the power-train, supports, suspensions, casings, gears and many others.


IMG_3447.jpg


3)Aluminum Sand Casting from the Numerical Simulation Perspective

A simulation model that optimizes the process and layout of sand casting requires a complete fluid-dynamics simulation, including the change of a laminar flow of molten metal to an undesired turbulent flow. The model should also account for the natural air permeability of the mold, allowing gases and steam created by the casting process to easily escape, thanks to the good permeability of sand molds and cores. Some typical process parameters and their corresponding outcomes to be included in the model are:

◆ the risk of inclusion in the case of a turbulent  vortex and molten metal velocity above the suggested 0.5 m/s range

◆ the temperature changes during the filling process in order to predict the emergence of cold shuts

◆ possible overheating where the cores touch the metal caused by the low heat absorption of the sand which could result in surface defects such as sinks

◆ different cooling rates as these can generate a high level of residual stress and significant casting distortion

 


Related Products

Inquiry